Towards
Comprehensive Fuzzing
of TrustZone TAs

B _HACK 2024

Juhyun Song
Korea University

About

Juhyun Song

https://juhyun167.github.io/about

Experiences

« KAIST Hacking Lab
« Undergraduate Intern (2023.12~Present) —

« Samsung Electronics
* Intern, Conducted research on TrustZone Security (2023.03~06)

* KITRI Best of the Best
» Hall of Fame, Conducted research on device drivers (2020.07~2021.02) é?

https://juhyun167.github.io/about

Motivation

“Have you heard of TrustZone?"

Motivation

“Have you heard of TrustZone?"

Motivation g

A OP-TEE documentation ;
@ / OP-TEE Documentation s of Real-World
latest ulation

amsung Research America;

OP-TEE Documentation - Lrch America

ation/harrison

Getting started

he official location for OP-TEE documentation.
dings of the
ing started sium.

GLOBALPLATFORM

p\bout OP-TEE
oding standards
ontribute he Proceedir

ontact pearerom

GLOBALPLATFORM®

THE STANDARD FOR SECURE DIGITAL SERVICES AND DEVICES

GlobalPlatform [f
TEE Client AP

Version 1.0

Public Release
July 2010
Document Reference:

GlobalPlatform Technology
TEE Internal Core API Specification
Version 1.1.2.50 (Target v1.2)

Public Review
June 2018
Document Reference: GPD_SPE_010

Topics

 Trusted Execution Environments and TrustZone
« Trusted Applications
e Challenges in TA fuzzing

« Our approach

Computing Ecosystem

* Increasing number of services are being deployed on the cloud.
« Growing number of mobile devices are managing security-sensitive tasks.

dWS
N—)

Computing Ecosystem

« What would happen if these systems were hacked?

* Would the services and credentials remain secure, even in the face of
privileged attackers?

CVE-2023-28252: Analysis of In-
the-Wild Exploit Sample of CLFS
Privilege Escalation Vulnerability

&) Cybersecinfo - Follow
& 19minread - Jun1,2023

Q

Overview

Kaspersky has disclosed [1] that the 0day vulnerability CVE-2023-28252 is an

out-of-bounds write (increment) vulnerability, which can be exploited to

Trusted Execution Environments

* Trusted Execution Environments (TEEs) significantly reduce the attack
surface against powerful adversaries.

« TEEs guarantee that the code and data residing within the secure region
of the main processor maintain both confidentiality and integrity.

TrustZone

* TrustZone is a security extension
for ARM processors.

* |t partitions the processor into two
distant realms: the secure world
and the normal world.

10

TrustZone

Normal world Secure world
[Handler #1] [Handler #1]
(Handler #2] [Handler #2]
-~ 2 [Handler #3 } [Handler #3]
Client App { Client App Trusted App | | || Trusted Ap ELO
A y A ’(/’-;’ :\J > A K
__)TN
v v v " y
[TrustZone Driver J [TEE Internal API]
¢ Rich Operating System Trusted Operating System EL1
SMC SMC
A 4 \ 4
Secure Monitor EL3

1"

TrustZone

Normal world

Secure world

Ve

Ve

C
-

N
) I
.

[Handler #1]

[Handler #1]

(Handler #2]

[Handler #2]

[Handler #3 } [Handler #3]

-~ =
) “4 AP Client App Trusted App | | || Trusted Ap ELO
= =N Z
A y ’)

. L - ﬁ? L -),)

__

e@:/ B / v 32 .
[TrustZone Driver J [TEE Internal API]

EL1

¢ Rich Operating System Trusted Operating System

Secure Monitor EL3

TrustZone

Normal world

-~ =
4 "" ,1p M{ Client App

C
-

Secure world

Ve

Ve

N
) I
.

[Handler #1]

[Handler #1]

(Handler #2]

[Handler #2]

[Handler #3 }

[Handler #3]

Trusted Operating System

k Secure Monitor

ELO

Trusted App | | || Trusted Ap
g =3 ya
A 1] («;)N A ’))')
B S L NN
| TEE Internal API

=

13

TrustZone

Normal world

-~ =
4 ’l’ ,1p M{ Client App M

Secure Mg* ™

Secure world

Ve

Ve

C
-

N
) I
g

[Handler #1]

[Handler #1]

(Handler #2]

[Handler #2]

[Handler #3 }

[Handler #3]

Trusted App
—

Trusted Ap

| TEE Internal API

Trlﬂ Operating System
4.

y

ELO

EL1

14

TrustZone

« Manufacturers construct TEEs based on TrustZone by implementing their
unique software architectures.

Trusted execution
m .
n environment

ELO
User

EL1
Kernel

EL3
Monitor

SAMSUNG

Qualcom B o = Android 22

15

Trusted Applications

* Trusted Applications (TAs) are applications that operate within the TEE.

« TAs provide essential security feature through a secure interface.
 e.g., mobile payments, cryptographic keystore, confidential computing

16

Trusted Applications

Samsung Blockchain

DApp/Wallet

(2 (9

o Rich Execution Environment

Request Handler

Finger-

Setting

TA Connector

o oTrusted Execution Environment

17

Trusted Applications

DApp/Wallet

n < Confirm transaction details o

Samsung Bloc} &

888231223132023

23210302032312wggsasdd

~a

00103 ETH b83ADI627CECOACHFSST1AESS2258D1

Amount

FeeolEstimated)

DOOOOOIETH

0000007 ETH

Total

Tolal

Trusted Applications

DApp/Wallet

a 0 .
< Confirm transaction details o

Samsung Bloc} &

7. Samsung Blockchain Keystore signs the transaction with the key derived from the Root Seed in the

Trusted Execution Environment.
8. Transaction signed by TA in Samsung Blockchain Keystore is now returned to Samsung Blockchain

Keystore app.

DO0O00IETH

0.000007 ETH

Trusted Applications

* TAs implement each functionality as distinct command handlers.

« analogous to device drivers and GUI programs.

TEE Result TA InvokeCommandEntryPoint (void = unused *session,
uint32 t command,
uint32 t param types,
TEE Param params([4])

switch (command) {
case TA SECURE STORAGE CMD WRITE RAW:

return create raw object (param types, params);
case TA SECURE STORAGE CMD READ RAW:

return read raw object (param types, params);
case TA SECURE STORAGE CMD DELETE:

return delete object (param types, params);

20

Trusted Applications

 Client Applications (CAs) are applications in the normal world that
communicate with TAs.

« CAs are required to provide the command ID and parameters for the desired
TA commands, and they receive a result code upon completion.

op.params[0] .tmpref.buffer = id;
op.params[0] .tmpref.size = id len;

op.params[1] .tmpref.buffer = data;
op.params[l].tmpref.size = data len;

res = TEEC InvokeCommand (&ctx->sess,
TA SECURE STORAGE CMD READ RAW,
&op, &origin);

21

Normal world

Open Session
(session: 1000)

Secure world

[Handlers]

2: set-iv,

1: set-key,

3: encrypt,

input[] world-shared | params[0].buf
"hello\x00" < —>» | "hello\x00"
output][] params[1l] .buf
ab64d6c54abfe8be. .. < N —>» | ab64d6c54abfe8be. ..
Client App Trusted App
TA Entrypoint
1. InvokeCommandl | | 7T TR e
(ta entry)
API call - -

4. Load session
session: 1000, 2- Sha.red memory context
cmd-id: 3 | <encrypt> reglstratlon 5. Execute TA
params: [input, output] command

cmd-id: 3 <encrypt>
. . params: [input, output]
TEE Client Library
¥ 3. SMC I
TrustZone Driver (ioctl)
: Trusted OS D p—
Rich OS

FIGURE 4. World switch procedure in
OP-TEE based TAs. In this example, the
CA is invoking the encrypt handler with
two memory parameters.

TrustZone Security

* We now understand that TrustZone maintains its security even if the
normal world OS is compromised.

However, are we certain that TrustZone itself is secure?
« Are there absolutely no vulnerabilities in TAs and TEES?

23

TrustZone Security

* |t turns out that TrustZone have been
successfully attacked due to security flaws in

recent years.

 e.g., absent mitigations, validation bugs,
map physical memory

« Some vulnerabilities could even be leveraged
to compromise the normal world OS.

SoK: Understanding the Prevailing Security Vulnerabilities in
TrustZone-assisted TEE Systems

David Cerdeira Nuno Santos

Pedro Fonseca Sandro Pinto

Centro Algoritmi INESC-ID / Instituto Superior Técnico Department of Computer Science Centro Algoritmi

Universidade do Minho Universidade de Lisboa
david.cerdeira@dei.uminho.pt nuno.santos @inesc-id.pt

Abstract—Hundreds of millions of mobile devices worldwide
rely on Trusted Execution Environments (TEEs) built with Arm
TrustZone for the protection of security-critical applications (e.g.,
DRM) and operating system (OS) components (e.g., Android
keystore). TEEs are often assumed to be highly secure; however,
over the past years, TEEs have been successfully attacked
multiple times, with highly damaging impact across various
platforms. Unfortunately, these attacks have been possible by
the presence of security flaws in TEE systems. In this paper, we
aim to understand which types of vulnerabilities and limitations
affect existing TrustZone-assisted TEE systems, what are the
main challenges to build them correctly, and what contributions
can be borrowed from the research community to overcome
them. To this end, we present a security analysis of popular
TrustZone-assisted TEE systems (targeting Cortex-A processors)

developed by Qualcomm, Trustonic, Huawei, Nvidia, and Linaro.

By studying publicly documented exploits and vulnerabilities as
well as by reverse engineering the TEE firmware, we identified
several critical vulnerabilities across existing systems which
makes it legitimate to raise reasonable concerns about the security
of commercial TEE implementations.

Index Terms—TEE, TrustZone, Security Vulnerabilities, Arm

I. INTRODUCTION

Trusted Execution Environments (TEE) are a kevzd
mechanism to protect the integrity and g !
applications. By leveraging dedicated hg
the execution of security-sensitive appX
domains isolated from the platfor:

Arm TrustZone [1] has become th
ogy to implement TEEs in mobile}
employed in industrial control s¥3
low-end devices [4]. In the futurej
enabled IoT devices are expect}
provide secure environments fo

TrustZone-assisted TEEs are
secure than modern OSes due t
enforced by TrustZone techno
Computing Base (TCB), whi
smaller than standard G
become widely adg
malware [6-10%

Purdue University Universidade do Minho
pfonseca@purdue.edu sandro.pinto @dei.uminho.pt

In this paper, we perform a systematic study of publicly dis-
closed vulnerabilities in commercial TrustZone-assisted TEEs
for Arm Cortex-A devices. Despite the existence of multiple
security reports affecting such systems, this information tends
to be scattered and, in certain cases, unverified, which makes
it difficult to obtain a comprehensive understanding of the
prevailing vulnerabilities and overall security properties of these
systems. To fill this gap, we analyzed 207 TEE bug reports
spanning a nearly 5 years, from 2013 until mid-2018, focusing
on widely deployed TEE systems developed for Arm-based
devices by five major vendors: Qualcomm, Trustonic, Huawei,
Nvidia, and Linaro. We examined and categorized numerous
vulnerabilities, in particular, some of those that have been
leveraged to carry out successful attacks. From our analysis
along with the manual inspection of TEE firmware, we have
gained multiple insights about the extent and causes of existing
vulnerabilities, and about potential solutions to mitigate them.

One first observation is that TEE systems have a long history
of critical implementation bugs. Numerous bugs have been
(and continue to be) found inside TEE applications — named
Trusted Applications (TAs) — and inside the trusted kernel

esponsible for managing the TEE runtime. Many bugs involve

Bl input validation errors, such as buffer overflows. As

B multiple attacks, these bugs can be leveraged to
pid’s Linux kernel or to entirely compromise the
devices featuring TEEs by Qualcomm [14, 15],
], or Huawei [18].
pe vulnerable TAs is facilitated by the
Sal deficiencies of TrustZone-assisted TEE
Je, the memory protection mechanisms
1 modern OSes, e.g., ASLR or page guards,
br ill-implemented in most analyzed systems.
b tend to expose a large attack surface,
s TEE kernel system calls that can be
br example, on Qualcomm’s TEE, any TA
regions of the host OS. As a result, by

[15].
perties are overlooked in most
al and microarchitectural
ity of the TEE. Some
behavior of trusted
gtural side-channels
components that
n TEE-restricted

TrustZone Security

Vs

Normal world

-~ =
| " b AP M{ Client App M

[TrustZone Driver J

¢ Rich Operating System

C
-

Secure world

Ve

Ve

N
) I
g

[Handler #1]

(Handler #2]

[Handler #2]

[Handler #3 }

[Handler #3]

Trusted App

Trusted Ap

[Handler #1]

4

ELO

TEE Internal API

EL1

Trlﬂ Operating System
4.

25

TrustZone Security

Vs

Normal world

Secure world

c \ C
c c
(N s

[Handler #1] [Handler #1]
(Handler #2] [Handler #2]

[Handler #3 } [Handler #3]

-~ =
4 ’l’ ,1p M{ Client App M

;&r/ Y A ‘\Trusted Ap ELO
> .
S T oG MR
ee./“:‘s 2 ¥ v ee_/~€s - = y
[TrustZone Driver J [TEE Internal API]
¢ Rich Operating System Trlﬂ Operating System EL1
q D SO, ’\ __
SMC f ’ ®MC
| - A
Secure Mc® \\/', /] =

—

V'S

\I

>

26

TrustZone Security

Vs

Normal world

9

-~ =
,1p M{ Client App M

TrustZone Driver

¢ Rich Operating System

Secure world

Ve

Ve

C
-

N
r
-

[Handler #1]

[Handler #1]

(Handler #2] [Handler #2]
[Handler #3 } [Handler #3]
":Sr/ Y A ‘\Trusted Ap

ELO

27

TrustZone Security

Vs

Normal world

-~ =
4 ’l’ ,1p M{ Client App M

k Secure Mq

= 4

Secure world

Ve

Ve

C
-

N
r
-

[Handler #1]

[Handler #1]

(Handler #2]

[Handler #2]

[Handler #3 }

[Handler #3]

4

Trusted Ap ELO

)]

—

V'S

\I

28

TrustZone Security

« Among the implementation issues in TrustZone TEEs, validations bugs in TAs
constituted the largest portion. (33.16%)

Class Subclass # Bugs

Validation Bugs Secure Monitor 2 (1.07%)
Trusted Applications 62 (33.16%)
Trusted Kernel 52 (27.81%)
Secure Boot Loader 5 (2.67%)

Functional Bugs Memory Protection 32 (17.11%)
Peripheral Configuration 8 (4.28%)
Security Mechanisms 11 (5.88%)

Extrinsic Bugs Concurrency Bugs 11 (5.88%)
Software Side Channels 4 (2.14%)

Table VI

Number of bug reports involving implementation issues.

Summary

This is the third part of a blog series covering my security research into

Samsung’s TrustZone . Other parts in this series so far: 1, 2.
This post covers the following vulnerabilities that I have found:

SVE-2017-8888: Authentication Bypass + Buffer overflow in tlc_server
SVE-2017-8889: Stack buffer overflow in ESECOMM Trustlet
SVE-2017-8890: Out-of-bounds memory read in ESECOMM Trustlet
SVE-2017-8891: Stack buffer overflow in ESECOMM Trustlet

SVE-2017-8892: Stack buffer overflow in ESECOMM Trustlet

SVE-2017-8893: Arbitrarv write in ESECOMM Trustlet

Fuzzing

* Fuzzing is a process of identifying security vulnerabilities by repeatedly
testing a program with modified inputs.

* |t has been widely accepted in the field of software security assessment.
* e.g., Microsoft SDL, Google OSS-Fuzz

Office 365 Security
Development and

google/oss-fuzz - e ON

OSS-Fuzz - continuous fuzzing for open source

software.

w 10k % 2k
Used by Discussions Stars Forks

30

Challenges in TA Fuzzing

* Fuzzing TrustZone presents significant challenges due to its black-box
operation.

« Reading and modifying states in the secure world is not feasible.
* Instrumenting the TA or trusted OS is restricted without appropriate access.

* The fuzzer faces extreme difficulty to gain meaningful insights about its target.

(FULZER;C TRUSTZONE

/ .y .

Previous Works

Finding 1-Day Vulnerabilities in Trusted Applications
using Selective Symbolic Execution (NDSS 2020)

« emulates TA execution environemnts using selective
symbolic execution.

« necessitates a “patched” version of TA, resulting in
limitations during production testing.

Finding 1-Day Vulnerabilities in Trusted
Applications using Selective Symbolic Execution

Marcel Busch and Kalle Dirsch
{marcel.busch, kalle.dirsch} @fau.de
IT Security Infrastructures Lab
Department of Computer Science
Friedrich-Alexander University Erlangen-Niirnberg (FAU)

Abstract—Trusted Execution Environments (TEEs) constitute
jor by g block for modern mobile devices’ security

architectures. Yet, the anal; tools available to researchers
seeking to examine these criti mponenls are rudimentary
compared to the vast range of sophisticated tools available for
other execution contexts , Linux or Windows userland). We
see the primary reason for thc ack ol' tools is urlgmalmg from the
closed-s
Appl s (.
of vital importance, since they account for the largest attack
surface. Howewr. hardware primitives (i.e., ARM TrustZone)
prevent access to this hlgh-prwllcgcd context and thwart any
form of dynamic anal;

In this paper, we present our approach to investigate 1-day
vulnerabilities using selective symbolic execution of real-world
Trusted Applications (TAs). Our system, SimTA, is based on

3 . We bulld

an e).ploll ona

how SimTA facilitates the bin:

ing the analysis of a known ci 3 . Additionally, we
reveal two further issues, an authent bypass and a heap-
based buffer overflow, that have quietly been introduced by the
vendor.

I. INTRODUCTION

In 2016, at an event called “GeekPwn”, Stephens [22]
presented a chain of exploits that ultimately 0 an arbi-
trary code execution i i]. Using
these exploits, he could unlock the targeted device using the
fingerprint sensor with a finger of any person or even a nose.
His privilege escalation into the TEE is connected to CVE-
2016-8764, which is an input validation vulnerability that an
attacker can leverage to execute arbitrary shellcode within the
TEE context.

A common way to investigate vulnerabilities similar to
this is binary-diffing in combination with meticulous manual
analysis. To extract the patch for the vulnerability in question,
we refer to CVE-2016-8764’s summary [19] and identify
the latest affected version to compare it with its succeeding

Workshop on Binary Ana arch (BAR) 2020
23 February 2020, , CA, USA

ISBN 1-891562-62

https://dx.doi.org/10. 147ll/bdr 2020.23014
www.ndss-symposium.org

version. One problem that can arise while extracting the patch
is that not only the vulnerable sequence of instructions appears
in the binary-diff, but many others. For example, new features
could have been introduced, or compiler flags might have
changed, resulting in irrelevant sequences. In this case, indica-
tors such as additional code accessing attacker-provided input,
could be used to identify relevant sequences. Unfortunately,
it is not possible to use dynamic analysis inside of the TEE
to investigate the patches handling attacker-controlled input,
because access is usually locked down by vendors. After
finding a vulnerability, an analyst needs many parameters from
the address space to replicate the exploit. However, the layout
of the address space (i.e., the location where code and data
are mapped to), which is nece: for the replication, is not
publicly disclosed.

In this work, we present our insights and techniques to face
these challenges. We studied CVE-2016-8764 using manual
ysis guided by binary-diffing and performed a dynamic
analysis on the device, treating the TEE as a black-box. We
were successful in replicating Stephens’ exploit and gained
msmht% into Huawei’s TEE, Trusted Core (TC). Using this
space layout of the targeted
t, leveraging the runtime parameters observed from
the device, we implemented an angr-based [21] prototype,
SimTA, capable of emulating the execution environment.
SimTA achieves a runtime behavior that is close to the normal
execution of the TA on the device.

In addition to having an execution environment for the tar-
geted TA, SimTA allows us to annotate the attacker-controlled
input, thus, permitting us to filter patches dealing with attacker-
controlled input from the binary-diff. Furthermore, we can
even selectively introduce symbolic inputs to better understand
the constraints introduced by a patch. As a result, we found
a previously unknown 1-day heap-overflow vulnerabi
authentication bypass, and the already known type-confusion
vulnerability underlying CVE-2016-8764. We elaborate on the
analyses that led to these findings in our evaluation.

In summary, our contributions are the following:

‘We share our insights for the interfaces, the abstraction
layers, and the address space layout of one TA for
the TC TEE. In order to get access to TEE internals
and examine the runtime parameters of the TA, we
implement and use an exploit for CVE-2016-8764 to
collect the information from a real device.

32

Finding 1-Day Vulnerabilities in Trusted
Applications using Selective Symbolic Execution

Previous Works

Marcel Busch and Kalle Dirsch
{marcel.busch, kalle.dirsch} @fau.de
IT Security Infrastructures Lab
Department of Computer Science
Friedrich-Alexander University Erlangen-Niirnberg (FAU)

* Finding 1-Day Vulnerabilities in Trusted Applications
using Selective Symbolic Execution (NDSS 2020)

« emulates TA execution environemnts using selective
symbolic execution.

* necessitates a “patched” version of TA, resulting in
limitations during production testing.

Abstract—Trusted Execution Environments (TEEs) constitute
a major building block for modern mobile devices’ security
< analvsi availa 0 hers

version. One problem that can arise while extracting the patch
is that not only the vulnerable sequence of instructions appears

journal homepage:

TEEFuzzer: A fuzzing framework for trusted execution environments
with heuristic seed mutation

Guoyun Duan *?, Yuanzhi Fu?, Boyang Zhang ?, Peiyao Den
Zhiwen Chen *<*

SEE of Hunan Unive
® Information and Net

, Jianhua Sun?, Hao Chen?,

Yongzhou Hunan, 425199, China
iangtan Hunan

ARTICLE INFO ABSTRACT

With the rapid development of the Internet, data security faces new challenges. As a bridge between
the underlying hardware and upper layer applications, the operating system plays a critical role in
securing sensitive data. The trusted execution environments (TEEs) are special operating systems
aiming at preventing the illegal access and tampering of sensitive data. Thus, TEEs have much stricter
security requirements than normal operating systems. Fuzzing is a promising technique that is widely
used to identify vulnerabilities in operating systems and applications. However, existing fuzzing
frameworks are not directly applicable to TEE-enabled devices due to the specific architecture of
TEE-based systems.

In this paper, we present the design and implementation of a coverage-guided fuzzing framework
for trusted execution environments. Specifically, we build TEEFuzzer, a system that can perform
fuzz testing for the open portable trusted executive environment (OP-TEE), which is a widespread
TrustZone operating system. Our system contains several purpose-build components, which include a
seed generation module and a heuristic seed mutation module to achieve higher coverage, a coverage
collection module, and an automatic bug-reproducing module to improve efficiency. With extensive
evaluations, 38 crashes have been triggered in OP-TEE. In terms of performance, the average execution
speed of TEEFuzzer is 79.4 test cases per second. In summary, we show that fuzzing is a feasible and
effective approach to testing trusted execution environments.

Article history.

Received 18 October 2022

Received in revised form 28 February 2023
Accepted 4 March 2023

Available online 7 March 2023

 TEEFuzzer: A fuzzing framework for trusted execution
environments with heuristic seed mutation (FGCS 2023)

Keywords:

Fuzzing

Trusted computing

Particle swarm

Heuristic seed mutation
TrustZone

Trusted execution environment

« collect code coverage by instrumenting the trusted OS.

» not feasible when TA developers are restricted to obtain
such permissions.

1. Introduction

The rapid development of intelligent terminals and the popu-
larization of the Internet of Things (IoTs) have put forward higher
requirements for operating systems (OS) [1]. Besides simplicity
and low performance overhead [2], these devices urgently require
the operating systems to have the capability of providing high
security protection for critical systems. By deploying a tamper-
resistant security chip as the trusted root of the system [3], and
constructing important operational steps or processes in the sys-
tem into a chain of trust, we can obtain a security subsystem that
can ensure the security of critical systems and user data. Trusted
Execution Environment (TEE) proposed by Global Platform (GP)
is a critical security component in many systems to guarantee

© 2023 Elsevier B.V. All rights reserved.

the integrity and confidentiality of applications [4]. With the
help of dedicated hardware, TEEs can execute security sensitive
applications, like cryptographic key management and attestation,
in protected domains isolated from the normal OS that coex-
ists with TEEs. AMD, Intel, Google, Apple, Qualcomm, and other
vendors and device manufacturers have added TEE modules to
their products to enhance the security of their products [5,6].
ARM'’s TrustZone [7,8] is not only the hardware technology for
implementing TEE in mobile environments, but also the security
foundation for Android smartphones and IoT devices. In addition,
it is widely deployed in servers [9] and low-end devices [10].
It is expected that trillions of TrustZone-enabled devices will be
available in the market in the future.

It is well acknowledged that TrustZone-based TEEs are more
secure than normal OSes because of the hardware-enforced sepa-
rate execution environment and smaller Trusted Computing Base
(TCB). Thus, many systems rely on TEEs to protect them from

Previous Works

 PARTEMU: Enabling Dynamic Analysis of Real-World
TrustZone Software Using Emulation (USENIX 2020)

« emulate necessary HW & SW components for four
widely-used TrustZone TEEs.

« undisclosed due to industry involvements.

PARTEMU: Enabling Dynamic Analysis of Real-World TrustZone Software
Using Emulation

Lee Harrison"!, Hayawardh

akumar”!, Rohan Padhye?, Koushik Sen2, and Michael Grace!

ISamsung Knox, Samsung Research America
{lee.harrison,h.vijayakuma,ml.grace}@samsung.com
2EECS Department, University of California, Berkeley
{rohanpadhye, ksen}@cs.berkeley.edu

Abstract

ARM'’s TrustZone technology is the basis for security of bil-
lions of devices worldwide, including Android smartphones
and IoT devices. Because TrustZone has access to sensitive
information such as cryptographic keys, access to TrustZone
has been locked down on real-world de only code that
is authenticated by a trusted party can run in TrustZone. A
side-effect is that TrustZone software cannot be instrumented
or monitored. Thus, recent advances in dynamic analysis tech-
niques such as feedback-driven fuzz testing have not been
applied to TrustZone software.

To address the above problem, this work builds an emu-
lator that runs four widely-used, real-world TrustZone oper-
ating systems (TZOSes) - Qualcomm’s QSEE, Trustonic’s
Kinibi, Samsung’s TEEGRIS, and Linaro’s OP-TEE - and
the trusted applications (TAs) that run on them. The tradi-
tional challenge for this approach is that the emulation effort
required is often impractical. However, we find that TZOSes
depend only on a limited subset of hardware and software
components. By carefully choosing a subset of components
to emulate, we find we are able to make the effort practical.
We implement our emulation on PARTEMU, a modular frame-
work we develop on QEMU and PANDA. We show the utility
of PARTEMU by integrating feedback-driven fuzz-testing us-
ing AFL and use it to perform a large-scale study of 194
unique TAs from 12 different Android smartphone vendors
and a leading IoT vendor, finding previously unknown vul-
nerabilities in 48 TAs, several of which are exploitable. We
identify patterns of developer mistakes unique to TrustZone
development that cause some of these vulnerabilities, high-
lighting the need for TrustZone-specific developer education.
We also demonstrate using PARTEMU to test the QSEE TZOS
itself, finding crashes in code paths that would not normally
be exercised on a real device. Our work shows that dynamic
analysis of real-world TrustZone software through emulation
is both feasible and beneficial.

*q authors contributed equally to this work.

1 Introduction

ARM’s TrustZone technology [2] is the basis for security
of billions of devices worldwide, including Android smart-
phones [51,54] and IoT devices [55]. TrustZone provides two
isolated environments: a rich execution environment (REE
or “normal world”) for running normal applications, and a
trusted execution environment (TEE or “secure world”) for
running trusted applications. Only the secure world has access
to sensitive data such as cryptographic keys and biometrics
information. The secure world runs security-critical “trusted
applications” (TAs) for cryptographic key management, attes-
tation [41], device integrity maintenance [4], and authentica-
tion on top of a TrustZone operating system (TZOS). It is the
responsibility of the TAs and TZOS to protect access to such
sensitive data even if the normal world is fully compromised,
for example, due to malicious apps or users who “root” their
smartphones [63]. A vulnerabil n a TA or the TZOS leads
to a breakdown of this protection. Therefore, it is critical to
be able to analyze the security of TrustZone software.

In spite of TrustZone software’s importance to security,
dynamic analysis of real-world TrustZone software is limited
by TrustZone’s locked-down nature. In real-world TrustZone
deployments, only code that is authenticated (i.e., signed) by a
trusted party can run. This restriction maintains the security of
data accessible only by the secure world. However, it comes at
acost: the inability to instrument or monitor code in the secure
world. This rules out applying dynamic analysis techniques
such as feedback-driven fuzz testing [9, 12,40, 61], concolic
execution [13,48], taint analysis [17,58], or debugging, on
TrustZone software on real devices.

As a result, approaches to analyze real-world TrustZone
software have been limited. Approaches to find TA vulner-
abilities include static reverse-engineering of binaries [7, 8]
and blind fuzzing without feedback [6] on real devices.
proaches that attempt to emulate software by forwarding re-
quests to real hardware [28, 31, 49, 59] through interfaces
such as JTAG or USB are not applicable, since TrustZone
hardware does not export such interfaces and its software is

Previous Works

PARTEMU: Enabling Dynamic Analysis of Real-World TrustZone Software
Using Emulation

Lee Harrison"!, Hayawardh Vijayakumar®!, Rohan Padhye?, Koushik Sen2, and Michael Grace!

 PARTEMU: Enabling Dynamic Analysis of Real-World
TrustZone Software Using Emulation (USENIX 2020)

« emulate necessary HW & SW components for four
widely-used TrustZone TEEs.

 undisclosed due to industry involvements.

 TEEzz: Fuzzing Trusted Applications on COTS
Android Devices (S&P 2023)

 black-box fuzzing with type and state inference.
 only provides a limited view of the target.

ISamsung Knox, Samsung Research America
{lee.harrison, h.vijayakuma, ml.grace}@samsung.com
2 —a Hibeeil St

[SILV O

Marcel Busch ~ Aravind Machiry Chad Spensky

Giovanni Vigna Christopher Kruegel Mathias Payer

EPFL Purdue University Allthenticate UC Santa Barbara UC Santa Barbara EPFL

Abstract—Security and privacy-sensitive smartphone appli-
cations use trusted execution environments (TEEs)
sensitive operations from malicious code. By design,
privileged access to the entire system but expose little to no insight
into their inner workings. Moreover, real-world TEEs enforce
strict format and protocol interactions when communicating with
trusted applications (TAs), which prohibits effective automated
testing.

EEzz is the first TEE-aware fuzzing framework capable of
effectively fuzzing TAs in situ on production smartphones, i.e.,
the TA runs in the encrypted and protected TEE and the fuzzer
may only observe interactions with the TA but has no control
over the TA’s code or data. Unlike traditional fuzzing techniques,
which monitor the execution of a program being fuzzed and view
its memory after a crash, TEEzz only requires a limited view
of the target. TEEzz overcomes key limitations of TEE fuzzing
(e.g., lack of visibility into the executed TAs, proprietary exchange
formats, and value dependencies of interactions) by automatically
attempting to infer the field types and message dependencies of
the TA API through its interactions, designing state- and type-
aware fuzzing mutators, and creating an in situ, on-device fuzzer.

Due to the limited availability of systematic fuzzing research
for TAs on commercial-off-the-shelf (COTS) Android devices, we

i y examine existing solutions, explore their limitations,

and demonstrate how TEEzz improves the state-of-the-art. First,
we show that general-purpose kernel driver fuzzers are ineffective
for fuzzing TAs. Then, we establish a baseline f
using a ground-truth experiment. We show that
forms other blackbox fuzzers, can improve greybox approaches
(if TAs source code is available), and even outperforms greybox
approaches for stateful targets. We found 13 previously unknown
bugs in the latest versions of OPTEE TAs in total, out of which
TEEzz is the only fuzzer to trigger three. We also ran TEEzz on
popular phones and found 40 unique bugs for which one CVE
was assigned so far.

Index Terms—Fuzzing, Android, TEE, ARM TrustZone

I. INTRODUCTION

Smartphones operate on private user data and perform
ve functionality, e.g., financial transactions [31], user

only the application, a vulnerability in a TA compromises the
security of the entire system [88], potentially even the secure
boot process [66].

While the security of these TAs is foundational to the secu-
rity of the device, performing effective testing (e.g., fuzzing)
remains an open challenge. Smartphones ship with the trusted
OS (tOS) and numerous pre-installed TAs, prohibiting the
normal world (e.g., Android) from inspecting their code at
runtime. TA interactions are stateful and use complex propri-

age formats [39]. The entities in the secure world
(TEE and] are often encrypted and get decrypted in secure
memory at runtime, prohibiting the use of static analysis.
based vulnerability detection techniques. Dynamic analy
i.e., fuzzing, is an effective alternative.

There are two principled approaches for fuzzing TAs: re-
hosting through emulation or on-device instrumentation.

Rehosting the TEE in an emulated environment overcomes
the inaccessibility of the TEE'’s internal state. PartEmu [39]

proprietary TEE software stacks. They
TAs, to an emulated system-on-a-chip
(S gaining unrestricted access to i internal state.
Limitations to this approach are (1) the reverse engineering
and implementation effort for emulated software and hard-
ware components, curacy of these implementa-
tions, (3) the 1 of public data sheets, and (4) industry
involvement leading to non-disclosure agreements for exist-
ing solutions. Especially the last ation deserves further
emphasis. PartEmu is the only existing rehosting solution
targeting multiple TEEs. The prototype validates the feasibility
of rehosting proprietary software stacks deployed on Samsung
dev and is not publicly available.

The second approach, on-device fuzzing, mitigates these
limitations and inaccuracies of emulation approaches. How-
ever, it lacks
back to blac!

Our Approach

« Despite residing in the secure world, TAs are essentially just instructions.

* |f we create a duplicate of a TA in the normal world, could we just fuzz
test it with standard fuzzers? (e.g., AFL++)

A

NALA

Transform

36

Secure world

Command Handlers

Normal world
‘ Command Handlers ’ < syscall
proxy request
‘ (not used) ’
DTA DTAs are binary duplicates of TAs
(Ditto Trusted App)
A
. . code coverage
command invocation
v fuzz testing TAs in the NW
Client App (harness }
PP () Fuzzers (e.g., AFL++) [€

L

test cases

FIGURE 2. Software architecture of Ditto Trusted Applications (DTAS).

Extended Handlers

Trusted App

A

syscall interrupt

TEE Internal API

Trusted Operating System

Key Challenges

* Locating DTA
 The memory map of TAs must be preserved on DTAs.

* Redirecting controls to DTA

 When invoking DTA command handlers, the register and memory sets
should reflect the context of the original TA with precision.

* Delegating system calls
« Secure world employs a completely different set of system calls.

38

Key Challenges

« We assume a TA vendor wants to add fuzzing to development cycle, but
restricted to modify trusted OS.

« We modified TAs to include the following four extended handlers.

switch (cmd id) { TABLE 1. Extended handlers and corresponding usages.
case CMD FETCH TA ADDRS:
return func fetch ta addrs(param types, params); Extended Handlers Description
case CMD SET DITTO PRINTE:) ,
— — - . . fetch_ta_addrs Transmit runtime data from the secure
return func set ditto printf (param types, params); world that is necessary for DTA cre-
case CMD COPY FROM TA: ation, such as (1) TA page addresses, (2)
return func copy from ta(param types, params); session ID, (3) stack pointer (sp), (4)
case CMD COPY TO TA: TA entrypoint function (__ta_entry)
— - = address, and (5) pseudo-shared memory
return func copy to ta(param types, params); address to the normal world.
case CMD_PROXY SYSCALL: copy_to_ta Transfer data from the buffer in the nor-
return func_proxy_ syscall (param types, params); mal world to the secure world.

copy_from_ta Transfer data from the buffer in the se-
cure world to the normal world. This
handler. along with coov to ta.is used

Code Segment Code Segment | 0x40015000

Data Segment 3. copy Data Segment | H 0x4002e000
—_— 4
Heap Segment . Heap Segment
Stack Segment Stack Segment 0x4003d000
DTA Shared Memories || |
(Ditto Trusted App) | managed by secure kernel |

J

Trusted App

T 2. allocate

Client App

1. fetch

Function setup ()

l'fetCh TA base address FIGURE 3. Process of DTA creation. First, the TA memory map is
2. allocate DTA pages acquired using the fetch ta addrs extended handler, and identical

3. copy TA pages pages are allocated in the normal world. Then, the contents of the TA
segments are transmitted using the copy from ta extended handler.

>
5. Branch to
DTA entrypoint

[stub code]
// push all registers
stp x0,x1, [sp, #-0x10]
stp x2,x3, [sp, #-0x10]
// set registers 3. Execute
mov x1,<session> stub code
mov x2,<cmd-id> —
// branch to DTA
mov sp,<DTA-stack> pseudo-
br <DTA-entry> shared

memory

DTA Entrypoint
(__ta entry)

4. Backup registers
to CA stack

[Handlers]
1: set-key,
2: set-iv, 4
3: encrypt,

params[0] .buf

"hello\x00"

params[1l] .buf

ab64doc54abfe8bc. ..

DTA
(Ditto Trusted App)

Custom API

)

session: 1000,
cmd-id: 3 <encrypt>

—

DTA Stack

param types

params [0] .address

param[0] .size

params[1l].address

params([l] .size

]

1. InvokeCommandD
custom API call

2. Place params
to DTA stack

CA Stack

params: [input, output]
| CA return address
input[] CA stack pointer
"hello\x00"
output[] Register X2
ab64d6c54abfes. . . Register X3
Register X0
Chent App Register X1

]

FIGURE 5. Transition of control flow
during the execution of DTA command
handlers.

Normal world

Trampoline T}

T1:

// compute T2 address
// at runtime

---------- 1 movz x27,T2[0:16]

2 movk x27,T2[16:32]
A 3 movk x27,T2[32:48]
| 4 blr x27 // T2
utee storage obj read:
1 mov x8,#0x32 | System Call Wrapper
2 b 0x40000000 // T1 (paiched)
3 ret
res = .
utee_storage obj read(T)Xlnbrary
object, buffer, (copied from TA) DTA
size, &cnt6d);
T user-land
res = [Handlers]
TEE_ReadObjectData (3: read-object
object, data,
object info.dataSize, .
&read bytes); Ditto Trusted App
res = InvokeCommandD (1
sess, o
CMD_READ OBJECT, Client App
op, origin);
CA
// input memory sync user'land

res = InvokeCommand (
sess,
CMD_PROXY SYSCALL,
op, origin);

// output memory sync

Trampoline T5

Secure world

T

FIGURE 6. Transition of control flow when a DTA command handler invokes system calls.

TA
user-land
[Handlers] num = params[0].a;
0xFF: proxy-syscall args = params[1l].buffer;
res = syscall (num, args);
Trusted App return res;
TEE
kernel-land
A 4
TEE Result
Trusted OS |- syscall storage_obj_read

// syscall implementation

Delegating System Calls

* We rewrite the system call wrappers at runtime to direct the control flow

towards the trampolines.

utee log:

1 mov x8,#0x1 // system call number
2 - svc #0

2 + b 0x40000000 // trampoline T1

3 ret

utee cache operation:
1 mov x8, #0x46 //
2 - svc #0

2 + b 0x40000000 //
3 ret

system call number

trampoline T1

const size t near addr = 0x40000000;
uint32 t *ditto syscall entry addr;

ditto syscall entry addr =

mmap ((void *) near addr, PAGE SIZE, PROT READ
| PROT WRITE, MAP PRIVATE | MAP ANONYMOUS, 0, O0);
éiéto_syscall_entry_addr[O] = 0Oxa9%bf7bfd;
ditto syscall entry addr[l] = 0xa9bf73fb;
ditto syscall entry addr[2] = (0bl110100101) << 23

| (bit0 _16) << 5 | 27;

Evaluation

« We successfully identified vulnerable sites in a sample TA using
AFL++ Frida mode.

« Additionally, we were able to visualize collected coverage data within binary
analysis platforms (e.g., Lighthouse).

TEE Result func crashme (uint32 t param types, TEE Param params[4])
{

1if

(buf[0] !'= "A'" && buf[0] != '"a') goto out;
if (buf[l] != '"B' && buf[l] ! 'b') goto out;
if (buf[2] !'= 'C'" && buf[2] ! 'c') goto out;
if (buf[3] != 'D' && buf[3] != 'd') goto out;
int *addr = (int *) O;

*addr = 0Oxdeadbeef;

Evaluation

« We successfully identified vulnerable sites in a sample TA using
AFL++ Frida mode.

« Additionally, we were able to visualize collected coverage data within binary
analysis platforms (e.g., Lighthouse).

TEE Result func crashme (. gmerican fuzzy lop ++4.07a {default} (testl) [fastlresults ——
— — process timing overall results
{ run time : @ days, @ hrs, 4 min, 20 sec cycles done : @
last new find : @ days, @ hrs, 1 min, 57 sec corpus count : &
o e o last saved crash : @ days, @ hrs, @ min, 12 sec saved crashes : 1
if (bUf [OJ = '"A'" && last saved hang : none seen yet saved hangs : @
cycle progress map coverage
1if (buf[l] != "B' && now processing : 3.8 (75.0%) map density : ©.14% / 0.14%
' Y~ runs timed out : @ (0.00%) count coverage : 1.00 bits/tuple
1f (bUf [21 = C & & stage progress findings in depth
1if (buf[(3] !'= 'D' && now trying : interest 16/8 favored items : 4 (100.00%)
stage execs : 38/160 (38.00%) new edges on : 4 (1080.80%)
total execs : 1948 total crashes : 1 (1 saved)
*addr = (*) . exec.speed : 7.48/§ec (zzzz...) total tmouts 1 0 (8 saved)
fuzzing strategy yields item geometry
*addr = Oxdeadbeef; bit flips : 1/128, 8/124, 8/116 - -

byte flips : 8/16, @8/12, @8/4

arithmetics : 3/896, 0/0, /@ 4 new edges,
known ints : @/87, 8/252, 8/132
dictionary : @/6, ©/8, a/8, a/0

Evaluation

« We successfully identified vulnerable sites in a sample TA using
AFL++ Frida mode.

« Additionally, we were able to visualize collected coverage data within binary
analysis platforms (e.g., Lighthouse).

american fuzzy lop ++4.87a {default} (testl) [fastlresults ——

TEE Result func crashme (uint32

process timing overall results
{ run time : & 1 A es done :
last new find : 100.00 .TEEC_FinalizeContex
RS last saved crash : g 100.00 .mprotect
if (buf[0] !'= "A' && buf[0] last saved hang : w 100.00 |sub DCO
, | B cycle progress = 100.00 sub_1050
if (buf[l] != B && buf[1l] now processing : e o 1506
. T runs timed out : —— - =
if (buf[2] != 'C' && buf[2] Ctoe progrecs X TR
if (bU.f [3} '= 'D'" && buf [3] now trying : 1nterest - 100.00 sub 159C
stage execs : 38/180 (3 Ub_95B651 TR = s
total execs : 1960 09-09 |sub 1679
. % ; * 0 exec speed : 7.48/sec kbl i
lﬂt addr - (lﬂt) 4 fUZZiﬂg stl‘ateg‘,f ‘,"iEld = e 96.08 :,:ub71078j
*addr = Oxdeadbeef; bit flips : 1/128, 0/ 94.44 sub_9556B1A4

- " " Qa9 /A a 28
byte flips : 8/16, 8/1 ! 89.55 sub_1728
arithmetics : 3/896, @/{ @ 86.36 sub_F88
- P e o] s
known ints : @/87, 8/2 i 81.82 sub 1144

dictionary : 6/8, @/9,

80539 sub_ 1228

Evaluation

* The overhead of DTA comprises
Initialization, command invocations, and
system call proxies.

* The actual overhead for system calls

varied depending on the specific
system call that has been invoked.

70

61.6

Milliseconds (ms)

Time Random Symmetric Asymmetric Secure
Cipher Cipher Storage

m Trusted App m Ditto Trusted App

FIGURE 11. Execution time of system call sets.

Evaluation

* Fuzzing with DTA resulted in a
performance gap of less than 15 exec/sec
in most TA operations.

18
16
14
12

Exec/Sec
o]

[R N

18
16
14
12
10

Exec/Sec
@

(oI VRN NG

FIGURE 12. Execution rates of AFL++ measured in

18
— SR
W ©
14
12
3
[i NP Q 0
8 8
& 6
4
2
o
o 5 10 15 20 25 30 o 5 10 15 20 25 30
Run time (min) Run time (min)
-=Trusted App -=Ditto Trusted App -=Trusted App -=Ditto Trusted App
(a) Time (b) Random
18
16
14
e et ey
12
g e -
%3] 10
o 8
[
&6
4
2
o
o 5 10 15 20 25 30 o 5 10 15 20 25 30

Run time (min)

-=Trusted App -=Ditto Trusted App
(¢) Symmetric Cipher

-=Trusted App -=Ditto Trusted App

Run time (min)

(d) Asymmetric Cipher

18
16
14
12

10
8

Exec/Sec

o N A

o 5 10

15

20

Run time (min)

-Trusted App -=Ditto Trusted App

25

(e) Secure Storage

executions per second (exec/sec).

30

listening
soc_term:
soc_term:
soc_term:

on port 54321
accepted fd 4
read fd EOF

accepted fd 4

listening on port 54320

soc_term:
soc_term:
soc_term:

accepted fd 4

read fd EOF

accepted fd 4

e 0 user@lima-default: ~/workspace/optee/build 32
ES

% To run OP-TEE tests, use the xtest command in the 'Normal World' terminal

* Enter 'xtest -h' for help.

cd /home/user.linux/workspace/optee/build/../out/bin &% /home/user.linux/workspa
ce/optee/build/../qgemu/build/aarché4-softmmu/gemu-system-aarchés \

-nographic \

-serial tcp:localhost:54320 -serial tcp:localhost:54321 \

-smp 2 \

-5 =S8 -machine virt,acpi=off, secure=on,mte=off,gic-version=3,virtualizat
ion=false \

~-Cpu max, sme=on, pauth-impdef=on \

-d unimp -semihosting-config enable=on, target=native \

-m 1057 \

-bios bll.bin \

-initrd rootfs.cpio.gz \

~kernel Image \

-append ‘console=ttyAMA®, 38400 keep_bootcon root=/dev/vda2 ' \

\

-object rng-random, filename=/dev/urandom,id=rng® -device virtio-rng-pci,
rng=rng®, max-bytes=1024, period=1008 -netdev user,id=vmnic -device virtio-net-dev
ice,netdev=vmnic
QEMU 8.0.0 monitor - type 'help' for more information
(qemu) i

49

Conclusion

« Current methods for fuzzing TrustZone require extensive reverse
engineering and implementation efforts.

 We present DTA, a framework designed to facilitate TA fuzzing by executing
TAs outside the secure world.

« We have made DTA available at https://github.com/juhyun167//dta

50

https://github.com/juhyun167/dta

®
Conclusion o EEEAes

Received 31 December 2023, accepted 21 January 2024, date of publication 25 January 2024, date of current version 5 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3358612

darticle{song2024dta, mm
DTA: Run TrustZone TAs Outside the

Secure World for Security Testing

title={DTA: Run TrustZone TAs Outside
the Secure World for Security Testing},

author={Song, Juhyun and Jo, Eunji and
Kim, Jaehyu},

jJournal={IEEE Access},

JUHYUN SONG
! Department of Computs
2 onics, |

vear={2024},
. creating TEEs, allows Trusted Applications (TAs) to run with highly restricted communication interfaces
pub l 1S h er= { I E E E } However, the isolated nature of TrustZone makes it challenging to test TA security, which is a crucial task
given that TA vulnerabilities could se the entire system. Existing TrustZone fuzzing methods
} require substantial reverse engineering and implementation efforts, making them difficult to integrate into the
development proc In this paper, we introduce DTA, a framework that enables the use of existing fuzzers
for TA fuzzing. DTA’s design includes procedures for relocating utside the secure world, implementing
an alternative context switch mechanism, and delegating secure world system calls to a proxy handler. Our
approach has proven effective in identifying crashes in vulnerable TAs using AFL++-, and we provide an
evaluation of the overhead breakdown and a comparison with other methods. In conclusion, DTA offers a

more comprehensive solution for incorporating fuzz testing into the TA development cycle.

INDEX TERMS Trusted application (TA), trusted execution environment (TEE), fuzzing, OP-TEE.

I. INTRODUCTION

ARM TrustZone is a security technology that has been
widely deployed on billions of embedded devices around the
world [1]. TrustZone security operates on the fundamental
principle of separating the system into two distinct domains:
the normal world and the secure world [2]. Essential security
functions, including authentication, encryption, and digital
rights management (DRM) are executed exclusively within
the secure world. Interactions between the normal world and
the secure world are permitted through restricted interfaces,
enabling controlled access to the secure world and providing

implementation, and hardware itself, highlighting the need
for enhancements in overall system security.

A. CHALLENGES IN TA FUZZING

Enhancing the security of TrustZone presents a unique chal-
lenge due to its structural attributes such as world separation,
access control, and information blocking, which impede
security analysis. Dynamic security analysis is essential
for many security activities, including the identification,
analysis, and mitigation of vulnerabilities [5].

a technique that tests dynamic behavior of pro,

thank you.

juhyun.a7@gmail.com

