
Towards
Comprehensive Fuzzing
of TrustZone TAs

Juhyun Song
Korea University

About

Juhyun Song
https://juhyun167.github.io/about

Experiences
• KAIST Hacking Lab

• Undergraduate Intern ㏖2023.12㚑Present㏗
• Samsung Electronics

• Intern, Conducted research on TrustZone Security ㏖2023.03㚑06㏗
• KITRI Best of the Best

• Hall of Fame, Conducted research on device drivers ㏖2020.07㚑2021.02㏗

https://juhyun167.github.io/about

Motivation

3

㐮Have you heard of TrustZone?㐯

Motivation

4

㐮Have you heard of TrustZone?㐯

Motivation

5

Topics
• Trusted Execution Environments and TrustZone
• Trusted Applications
• Challenges in TA fuzzing
• Our approach

6

Computing Ecosystem
• Increasing number of services are being deployed on the cloud.
• Growing number of mobile devices are managing security㎼sensitive tasks.

7

Computing Ecosystem
• What would happen if these systems were hacked?
• Would the services and credentials remain secure, even in the face of

privileged attackers?

8

Trusted Execution Environments
• Trusted Execution Environments ㏖TEEs㏗ significantly reduce the attack

surface against powerful adversaries.
• TEEs guarantee that the code and data residing within the secure region

of the main processor maintain both confidentiality and integrity.

9

TrustZone
• TrustZone is a security extension

for ARM processors.
• It partitions the processor into two

distant realms: the secure world
and the normal world.

10

TrustZone

11

TrustZone

12

TrustZone

13

TrustZone

14

TrustZone
• Manufacturers construct TEEs based on TrustZone by implementing their

unique software architectures.

15

Trusted Applications
• Trusted Applications ㏖TAs㏗ are applications that operate within the TEE.
• TAs provide essential security feature through a secure interface.
• e.g., mobile payments, cryptographic keystore, confidential computing

16

Trusted Applications

17

Trusted Applications

18

Trusted Applications

19

Trusted Applications
• TAs implement each functionality as distinct command handlers.
• analogous to device drivers and GUI programs.

20

TEE_Result TA_InvokeCommandEntryPoint(void __unused *session,
 uint32_t command,
 uint32_t param_types,
 TEE_Param params[4])
{
 switch (command) {
 case TA_SECURE_STORAGE_CMD_WRITE_RAW:
 return create_raw_object(param_types, params);
 case TA_SECURE_STORAGE_CMD_READ_RAW:
 return read_raw_object(param_types, params);
 case TA_SECURE_STORAGE_CMD_DELETE:
 return delete_object(param_types, params);

Trusted Applications
• Client Applications ㏖CAs㏗ are applications in the normal world that

communicate with TAs.
• CAs are required to provide the command ID and parameters for the desired

TA commands, and they receive a result code upon completion.

21

op.params[0].tmpref.buffer = id;
op.params[0].tmpref.size = id_len;

op.params[1].tmpref.buffer = data;
op.params[1].tmpref.size = data_len;

res = TEEC_InvokeCommand(&ctx->sess,
 TA_SECURE_STORAGE_CMD_READ_RAW,
 &op, &origin);

FIGURE 4. World switch procedure in
OP㎼TEE based TAs. In this example, the
CA is invoking the encrypt handler with
two memory parameters.

TrustZone Security
• We now understand that TrustZone maintains its security even if the

normal world OS is compromised.
• However, are we certain that TrustZone itself is secure?
• Are there absolutely no vulnerabilities in TAs and TEEs?

23

TrustZone Security

24

• It turns out that TrustZone have been
successfully attacked due to security flaws in
recent years.
• e.g., absent mitigations, validation bugs,

map physical memory
• Some vulnerabilities could even be leveraged

to compromise the normal world OS.

TrustZone Security

25

TrustZone Security

26

TrustZone Security

27

TrustZone Security

28

TrustZone Security
• Among the implementation issues in TrustZone TEEs, validations bugs in TAs

constituted the largest portion. ㏖33.16㚜㏗

29

Fuzzing
• Fuzzing is a process of identifying security vulnerabilities by repeatedly

testing a program with modified inputs.
• It has been widely accepted in the field of software security assessment.
• e.g., Microsoft SDL, Google OSS㎼Fuzz

30

Challenges in TA Fuzzing
• Fuzzing TrustZone presents significant challenges due to its black㎼box

operation.
• Reading and modifying states in the secure world is not feasible.
• Instrumenting the TA or trusted OS is restricted without appropriate access.

• The fuzzer faces extreme difficulty to gain meaningful insights about its target.

31

Previous Works

32

• Finding 1㎼Day Vulnerabilities in Trusted Applications
using Selective Symbolic Execution ㏖NDSS 2020㏗
• emulates TA execution environemnts using selective

symbolic execution.
• necessitates a 㐮patched㐯 version of TA, resulting in

limitations during production testing.

Previous Works

33

• Finding 1㎼Day Vulnerabilities in Trusted Applications
using Selective Symbolic Execution ㏖NDSS 2020㏗
• emulates TA execution environemnts using selective

symbolic execution.
• necessitates a 㐮patched㐯 version of TA, resulting in

limitations during production testing.

• TEEFuzzer: A fuzzing framework for trusted execution
environments with heuristic seed mutation ㏖FGCS 2023㏗
• collect code coverage by instrumenting the trusted OS.
• not feasible when TA developers are restricted to obtain

such permissions.

Previous Works

34

• PARTEMU: Enabling Dynamic Analysis of Real㎼World
TrustZone Software Using Emulation ㏖USENIX 2020㏗
• emulate necessary HW 㖅 SW components for four

widely㎼used TrustZone TEEs.
• undisclosed due to industry involvements.

Previous Works

35

• PARTEMU: Enabling Dynamic Analysis of Real㎼World
TrustZone Software Using Emulation ㏖USENIX 2020㏗
• emulate necessary HW 㖅 SW components for four

widely㎼used TrustZone TEEs.
• undisclosed due to industry involvements.

• TEEzz: Fuzzing Trusted Applications on COTS
Android Devices ㏖S㖅P 2023㏗
• black㎼box fuzzing with type and state inference.
• only provides a limited view of the target.

Our Approach
• Despite residing in the secure world, TAs are essentially just instructions.
• If we create a duplicate of a TA in the normal world, could we just fuzz

test it with standard fuzzers? ㏖e.g., AFL㚅㚅㏗

36

FIGURE 2. Software architecture of Ditto Trusted Applications ㏖DTAs㏗.

Key Challenges
• Locating DTA
• The memory map of TAs must be preserved on DTAs.

• Redirecting controls to DTA
• When invoking DTA command handlers, the register and memory sets

should reflect the context of the original TA with precision.
• Delegating system calls
• Secure world employs a completely different set of system calls.

38

Key Challenges
• We assume a TA vendor wants to add fuzzing to development cycle, but

restricted to modify trusted OS.
• We modified TAs to include the following four extended handlers.

39

switch (cmd_id) {
case CMD_FETCH_TA_ADDRS:
 return func_fetch_ta_addrs(param_types, params);

case CMD_SET_DITTO_PRINTF:
 return func_set_ditto_printf(param_types, params);

case CMD_COPY_FROM_TA:
 return func_copy_from_ta(param_types, params);

case CMD_COPY_TO_TA:
 return func_copy_to_ta(param_types, params);

case CMD_PROXY_SYSCALL:
 return func_proxy_syscall(param_types, params);

FIGURE 3. Process of DTA creation. First, the TA memory map is
acquired using the fetch_ta_addrs extended handler, and identical
pages are allocated in the normal world. Then, the contents of the TA
segments are transmitted using the copy_from_ta extended handler.

FIGURE 5. Transition of control flow
during the execution of DTA command
handlers.

FIGURE 6. Transition of control flow when a DTA command handler invokes system calls.

Delegating System Calls
• We rewrite the system call wrappers at runtime to direct the control flow

towards the trampolines.
const size_t near_addr = 0x40000000;
uint32_t *ditto_syscall_entry_addr;

ditto_syscall_entry_addr =
 mmap((void *) near_addr, PAGE_SIZE, PROT_READ

| PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
...
ditto_syscall_entry_addr[0] = 0xa9bf7bfd;
// stp x29,x30,[sp,#-0x10]!
ditto_syscall_entry_addr[1] = 0xa9bf73fb;
// stp x27,x28,[sp,#-0x10]!
ditto_syscall_entry_addr[2] = (0b110100101) << 23
| (bit0_16) << 5 | 27;
// movz x27,ditto_syscall_func_addr[0:16]

utee_log:
1 mov x8,#0x1 // system call number
2 - svc #0
2 + b 0x40000000 // trampoline T1
3 ret
...
utee_cache_operation:
1 mov x8,#0x46 // system call number
2 - svc #0
2 + b 0x40000000 // trampoline T1
3 ret

Evaluation
• We successfully identified vulnerable sites in a sample TA using

AFL㚅㚅 Frida mode.
• Additionally, we were able to visualize collected coverage data within binary

analysis platforms ㏖e.g., Lighthouse㏗.

TEE_Result func_crashme(uint32_t param_types, TEE_Param params[4])
{
 ...
 if (buf[0] != 'A' && buf[0] != 'a') goto out;
 if (buf[1] != 'B' && buf[1] != 'b') goto out;
 if (buf[2] != 'C' && buf[2] != 'c') goto out;
 if (buf[3] != 'D' && buf[3] != 'd') goto out;

 int *addr = (int *) 0;
 addr = 0xdeadbeef; / CRASH */

Evaluation
• We successfully identified vulnerable sites in a sample TA using

AFL㚅㚅 Frida mode.
• Additionally, we were able to visualize collected coverage data within binary

analysis platforms ㏖e.g., Lighthouse㏗.

TEE_Result func_crashme(uint32_t param_types, TEE_Param params[4])
{
 ...
 if (buf[0] != 'A' && buf[0] != 'a') goto out;
 if (buf[1] != 'B' && buf[1] != 'b') goto out;
 if (buf[2] != 'C' && buf[2] != 'c') goto out;
 if (buf[3] != 'D' && buf[3] != 'd') goto out;

 int *addr = (int *) 0;
 addr = 0xdeadbeef; / CRASH */

Evaluation
• We successfully identified vulnerable sites in a sample TA using

AFL㚅㚅 Frida mode.
• Additionally, we were able to visualize collected coverage data within binary

analysis platforms ㏖e.g., Lighthouse㏗.

TEE_Result func_crashme(uint32_t param_types, TEE_Param params[4])
{
 ...
 if (buf[0] != 'A' && buf[0] != 'a') goto out;
 if (buf[1] != 'B' && buf[1] != 'b') goto out;
 if (buf[2] != 'C' && buf[2] != 'c') goto out;
 if (buf[3] != 'D' && buf[3] != 'd') goto out;

 int *addr = (int *) 0;
 addr = 0xdeadbeef; / CRASH */

Evaluation
• The overhead of DTA comprises

initialization, command invocations, and
system call proxies.
• The actual overhead for system calls

varied depending on the specific
system call that has been invoked.

FIGURE 11. Execution time of system call sets.

Evaluation
• Fuzzing with DTA resulted in a

performance gap of less than 15 exec/sec
in most TA operations.

FIGURE 12. Execution rates of AFL㚅㚅 measured in
executions per second ㏖exec/sec㏗.

49

Conclusion
• Current methods for fuzzing TrustZone require extensive reverse

engineering and implementation efforts.
• We present DTA, a framework designed to facilitate TA fuzzing by executing

TAs outside the secure world.

• We have made DTA available at https://github.com/juhyun167/dta

50

https://github.com/juhyun167/dta

Conclusion
Received 31 December 2023, accepted 21 January 2024, date of publication 25 January 2024, date of current version 5 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3358612

DTA: Run TrustZone TAs Outside the

Secure World for Security Testing

JUHYUN SONG 1, EUNJI JO2, AND JAEHYU KIM2
1Department of Computer Science and Engineering, Korea University, Seoul 02841, South Korea
2Samsung Electronics, Hwasung-si, Gyeonggi-do 18448, South Korea

Corresponding author: Juhyun Song (thegreatsonga@korea.ac.kr)

ABSTRACT As mobile devices increasingly handle security-sensitive tasks, Trusted Execution Environ-
ments (TEEs) have become essential for providing secure enclaves. TrustZone, a popular technology for
creating TEEs, allows Trusted Applications (TAs) to run with highly restricted communication interfaces.
However, the isolated nature of TrustZone makes it challenging to test TA security, which is a crucial task
given that TA vulnerabilities could compromise the entire system. Existing TrustZone fuzzing methods
require substantial reverse engineering and implementation efforts, making them difficult to integrate into the
development process. In this paper, we introduce DTA, a framework that enables the use of existing fuzzers
for TA fuzzing. DTA’s design includes procedures for relocating TAs outside the secure world, implementing
an alternative context switch mechanism, and delegating secure world system calls to a proxy handler. Our
approach has proven effective in identifying crashes in vulnerable TAs using AFL++, and we provide an
evaluation of the overhead breakdown and a comparison with other methods. In conclusion, DTA offers a
more comprehensive solution for incorporating fuzz testing into the TA development cycle.

INDEX TERMS Trusted application (TA), trusted execution environment (TEE), fuzzing, OP-TEE.

I. INTRODUCTION

ARM TrustZone is a security technology that has been
widely deployed on billions of embedded devices around the
world [1]. TrustZone security operates on the fundamental
principle of separating the system into two distinct domains:
the normal world and the secure world [2]. Essential security
functions, including authentication, encryption, and digital
rights management (DRM) are executed exclusively within
the secure world. Interactions between the normal world and
the secure world are permitted through restricted interfaces,
enabling controlled access to the secure world and providing
enhanced protection against external threats [3]. However,
despite the closed nature of TrustZone, a significant number
of vulnerabilities related to TrustZone have been reported [4].
Attacks targeting TrustZone present a considerable risk due
to the potential for the system to handle sensitive and
critical information. Moreover, TrustZone vulnerabilities can
arise from a variety of factors, including the structure,

The associate editor coordinating the review of this manuscript and
approving it for publication was Jiafeng Xie.

implementation, and hardware itself, highlighting the need
for enhancements in overall system security.

A. CHALLENGES IN TA FUZZING
Enhancing the security of TrustZone presents a unique chal-
lenge due to its structural attributes such as world separation,
access control, and information blocking, which impede
security analysis. Dynamic security analysis is essential
for many security activities, including the identification,
analysis, and mitigation of vulnerabilities [5]. Fuzzing,
a technique that tests dynamic behavior of programs, has
gained significant interest in the field of secure software
development in recent years, with prominent software corpo-
rations actively participating. Nevertheless, its application to
TrustZone is considerably limited since TrustZone operates
as a black-box. Given that we cannot read or update states in
the secure world, nor modify the binaries due to secure boot,
the fuzzer faces extreme difficulty in obtaining meaningful
insights about its target through interactions.
Numerous studies [6], [7], [8], [9], [10], [11], [12], [13]

have endeavored to tackle the aforementioned challenges.

VOLUME 12, 2024
⌦ 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 16715

@article{song2024dta,
 title={DTA: Run TrustZone TAs Outside
the Secure World for Security Testing},
 author={Song, Juhyun and Jo, Eunji and
Kim, Jaehyu},
 journal={IEEE Access},
 year={2024},
 publisher={IEEE}
}

thank you.
juhyun.a7㖄gmail.com

